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The paper presents a numerical investigation of the interaction of a strong shock wave (SW) with a drop, 
or a system of drops, of various liquids. This problem was previously studied by experimental methods mainly 
[1-5]. Note that there is often a lack of information in a physical experiment. In particular, in experiments 
on the interaction of SW with drops, their shapes are recorded at different instants but some important 
characteristics, like pressure and velocity fields, remain undetermined. Moreover, within the scope of a physical 
experiment it is rather difficult to study the influence of a separate parameter (e.g., liquid viscosity) with the 
others unchanged (there are no liquids with the density of water and the viscosity of glycerine in nature). 
A numerical experiment is free from these shortcomings, but we have to use simplified models in that case. In 
this particular study the gas was assumed to be ideal and the liquid, incompressible and viscous; the breakoff 
of microparticles from the windward surface of the drop was not taken into account, which reduces the value of 
the numerical solution but allows us to gain a more penetrating insight into the physics of the processes. The 
calculations are correct if the influence of the used assumptions is minimal, which impose certain limitations 
on the range of parameters. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m  and  M e t h o d  of  Calcu la t ion .  Let a plane SW run over a drop 
at rest in an ideal gas. For a given Mach number of the failing SW (M = D / c o ,  D is the propagation velocity 
of the SW front), the mass velocity of the gas Vs, the density ps, and the pressure ps behind its front are 
determined from the expressions 

Vs poc 2 Po + a~2 -- 1 - ee 

co (ze + 1)M ' 

pocoM 
= ps = po + p o v s c o M ,  

ps c0M - vs ' 

following from the Rankine-Hugoniot relations. Here ze is the adiabatic index (ae = 1.4), co is the sound speed, 
and the parameters in the undisturbed gas have the subscript 0. According to [6], the liquid is assumed to be 
viscous and incompressible. 

To obtain a numerical solution to the Euler equations, we used Godunov's method and the MAC 
method [6] for the Navier-Stokes equations. The deformation of a drop was determined by a modification of 
the method of markers. Since the gas density is significantly less than the liquid density, simplified boundary 
conditions were used at the contact boundary. The calculation of each time step of the conjugate problem 
was divided into two stages: first, the "external" problem of a gas flowing around a drop was solved with the 
contact boundary considered as a movable surface impermeable to the gas; then from the external pressure 
which was obtained at the first stage the liquid flow was calculated. From the stability conditions, the allowable 
time step for the gas is 5-10 times less than that for the liquid, so, as a rule, several calculation steps for the 
gas motion precede one step for the liquid motion. Note that for the strong SW considered here and large 
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drops, the surface tension forces are more than an order lower than the aerodynamic forces and, therefore, 
have no substantial effect on the interaction process. 

During the interaction, the deformations of a drop, caused, for example, by generation of thin liquid 
layers with one of their dimensions less than or equal to the dimensions of one cell, may be so large that the 
calculation of liquid motion in the layer is impossible by the method in use. In this case (for understanding 
the process qualitatively) the motion of the elements of the layer was calculated by integrating the differential 
equations of the motion 

dvk 
Amk - ~  = ApkSk, 

where Amk is the mass of a fragment of the liquid layer in the kth cell, vk is its velocity, and Apk is the 
pressure difference on the opposite sides of the studied fragment of the layer with area Sk. 

2. N u m e r i c a l  Resu l t s  for Single Drops.  A series of calculations were made for the interaction of 
a SW at Mach numbers from M = 3 to M = 10 with spherical drops of water and glycerine (do = 2 ram). 

Figures 1 a-d show the positions of the markers which characterize the deformation of the water drop 
for SW at M = 3 at time 0, 17.8, 30.2, and 37.9 #sec, respectively. As follows from the calculations, at the 
initial stage the picture of interaction is similar to that of a gas flowing around a solid particle. A detached SW 
forms ahead of the drop, but its shape and position change with time due to the deformation and acceleration 
Of the drop. By t = 17 #sec the drop compresses in the direction of the flow and takes on the form of a 
lens; then the thinnest (external) part of the drop displaces from its base core and forms a "hat" brim (in 
terms of [5]). The second local maximum of pressure appears near the base of the "hat" brim (the first one is 
near the symmetry axis ahead of the drop). The existence of the second local maximum leads to the essential 
reorganization of the liquid flow within the drop. In particular, when the pressure increases, the direction of 
motion of the liquid particles near the base of the "hat" brim changes, being displaced toward the symmetry 
axis, which results in compressing the liquid within the drop core up to the axis (Fig. ld). This is how the 
liquid jet is generated, as opposed to the flow observed in experiments [5]. 

Figure 2 presents the dependence of the relative enlargement of the water drop Ad/do (solid line) on 
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time t, and the dashed line is the same dependence for a drop with the density of water and the viscosity of 
glycerine. Thus, an increase in viscosity (about 1000 times) leads to a slightly decreased growth of the drop's 
transverse dimension. As the Mach number of the falling SW increases, the influence of the liquid viscosity 
becomes weaker, as seen in Fig. 3 which shows the time dependences of the relative change in the transverse 
dimension of a glycerine drop (dotted line) and a drop with the density of glycerine and the viscosity of water 
(points 1) for a SW at M = 10. Figure 3 also presents the dependences of the relative displacement Ax/xo 
for these drops (the dashed curve and points 2, respectively). The deformation velocity of the drop and its 
displacement substantially depend on the liquid density, as seen in Fig. 3 which presents the corresponding 
data for a water drop (M = 10) where the solid curve shows the dependence of the relative change in the 
drop's transverse dimension, and the dot-and-dash curve marks its relative displacement. 

Note that in calculations of the interaction of a SW (M = 3) with a glycerine drop we can see that the 
"hat" brim tears away from the core and therefore has no substantial influence on the drop's core destruction, 
which is of "parachute" type. The calculated deformation of the glycerine drop is also in agreement with 
experiments [5]. 

Thus the assumptions used here, relative both to the mathematical model and to the calculation 
method, do not grossly distort the general picture of the process of drop deformation and are acceptable for 
the investigated range of interaction velocities. 

3. Ca l cu l a t i on  Resu l t s  for  a D r o p  Screen.  The problem considered here is the problem of the 
interaction of a plane SW falling normally on a drop screen which is an ensemble of large (d ,,, 1 ram) liquid 
drops uniformly distributed over a plane. Screens of very small porosity were not considered in the work 
since in the literature this problem has been investigated rather completely within the scope of the model of 
mutually penetrating continuums [7, 8]. The data presented below were calculated for a SW at M = 10 which 
interacts with a screen irregular in thickness and porosity for the "staggered" disposition of water drops of 
the same size in a layer. For a screen consisting of glycerine drops, the calculation results are qualitatively 
similar; in this case the velocities of motion of the drop and the degree of their deformation appear to be 
somewhat lower than for the water screen. The diameter of water drops varied from 1 to 2.5 mm. The nature 
of the interaction depends essentially on the porosity of the drop layer (parameter K), which is determined 
via the relation of the volume of pores to the whole screen volume, on layer's thickness, and on the mutual 
disposition of particles in the layer. Note that due to the symmetric disposition of particles the resulting flow 
is also symmetric, which allows us to reduce the calculation region significantly and to study not the whole 
screen but only a part of it. 

Figure 4a presents the positions of drops calculated by t = 23.8 #sec after interaction of SW with 
the screen which consists of ten layers of water drops 1.4 mm in diameter (K = 0.83). Figure 4b shows the 
diagrams for distribution of the pressure P = p/(psu 2) (solid curve) and the velocity component uz (dashed 
curve) in relation to a linear coordinate which is directed transversely to the drop layer through the particles' 
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centers cMculated at t = 23.8 #sec (the point with z = 0 coorresponds to the extreme left boundary of the 
region in Fig. 4@ Figure 5 presents the dependences of the velocities of the first (solid curve) and the second 
(dot-and-dash curve) drop layer, and the dependence of the relative screen thickness AL/Lo (dashed curve) 
on time t. 

On analyzing the numerical results, we can present the physical picture of the interaction as follows. 
As the falling SW approaches the screen, a reflected SW forms. Its velocity, and to a smaller degree its 
amplitude, depend on the screen thickness and porosity. A compression wave propagates through the drop 
layer. Its propagation velocity is significantly less than the velocity of the falling SW, so a time delay is 
observed in the passage of SW through the screen. This is seen from Fig. 6 which shows the pressure curves 
at a point near the boundary of the calculated region behind the screen as functions of time t. Dashed and 
dot-and-dash lines correspond to the screens of the same porosity K = 0.83 but consisting of four and ten 
drop layers respectively; the dashed line is the dependence of pressure for a screen of ten drop layers and a 
porosity K = 0.72, the solid line is the pressure in the absence of a screen. 

As the compression wave reaches the back screen's surface, the SW propagates to the right of the 
layer. The pressure within the layer stabilizes and takes the form of a stepwise dependence, with its maximum 
value fixed near the "left" screen's boundary and its minimum value at the opposite side (Fig. 4b). Since the 
pressure distribution over the drop layer is nonuniform, the velocity of motion of the drop in the layers is also 
nonuniform: maximum is with the second layer drops (at the first moment of interaction it is with the the 
first layer of particles), minimum is with the particles at the "right" boundary, which results in the screen 
thickening on the side of the falling SW (Fig. 4a and 5). The first drop layer is separated from the others 
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since the pressure gradient decreases near the first layer's drops because of interaction with the SW reflected 
from the second layer of particles. 

Thereafter the velocities of the drop motion in the screen level off at the cost of interaction of the 
"faster" drops with particles of subsequent layers, hence their resulting velocity decreases. The decrease in 
the amplitude of the passed SW depends on the screen's thickness and porosity (Fig. 6). Thus, for a ten-layer 
screen [K = 0.72 (0.83)] the amplitude of the passed SW is reduced 7 (3.7) times with respect to the falling 
SW. For a four-layer screen (K = 0.83) the amplitude of the passed SW is reduced 1.8 times. As the velocity 
of the particles increases, the pressure in the reflected SW decreases slowly. The increase in the velocity of 
particles in the layer will continue untill the pressure to the left and to the right of the screen equalizes. 

Thus, the presence of a drop screen along the path of the SW leads to a time delay in passage of the SW 
through the layer, which is connected with a decrease in the velocity of the compression wave propagation 
within the layer; the delay is longer the greater the screen's thickness and the smaller its porosity. The 
amplitude and specific momentum of the SW that passed through the drop layer decrease. By interacting 
with the SW, the screen shrinks. Since we are dealing with a plane problem, there are no significant transverse 
pressure gradients in the neighborhood of the drops, hence the drops, in contrast to spherical ones, experience 
mainly a shear (longitudinal) deformation (Fig. 4a). 

The presence of a solid wall behind the screen changes the nature of interaction. We observe a difference 
after reflection of the SW from an obstacle. Given below are the calculated data for a drop screen consisting of 
four layers of water drops 1.4 mm in diameter. Figure 7 presents the pressure curves ahead of an obstacle on a 
symmetry plane (solid curve) and on a plane through the center of the first layer of particles (dashed curve); 
the dot-and-dash line shows the screen's relative thickness as a function of time. The calculations show that 
the pressure along an obstacle levels off rather quickly. The velocity of particles in the screen increases until 
the pressure to the left and to the right of the screen levels off, the screen's porosity being decreased (except 
for the first layer which is remote from the subsequent ones). Because of the inertness of the particles which, 
while slowing down, continue to move toward the obstacle and are carrying along the surrounding gas, the 
pressure behind the screen increases further. At this stage the behavior of the screen is similar to that of a 
piston which compresses a gas ahead of an obstacle. Thus, after some instant the pressure behind the screen 
is higher (more than 1.5 times) than that in the reflected SW without a screen (Figs. 6, 7). Later on, the 
gas begins flowing from the increased pressure region between the screen and the wall to the lower pressure 
region (in front of the screen). This regime of flow is adhered to for a sufficiently long time until the impact 
of particles on an obstacle. 

Note that if a drop screen has a layer which consists, for example, of larger drops and has permeability 
less than that of the other layers, then separation of the screen is observed in the layer's disposition. But 
further the velocities of motion of the drop in the screen level off because of the impact of "faster" drops on 
the subsequent layers' particles. Similar processes take place in other cases also, for example, in breaking the 
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symmetry of disposition of drops in the screen. 
The shock waves considered above are "long" shock waves which have a pressure profile in the form of 

a half-infinite "step." In the explosion of a charge the pressure profile is "triangular." Assume that at t = 0 
the increased pressure zone with parameters p = 0.118 �9 10 s Pa, p -- 7.7 kg/m 3, u = 0 is disposed in the cells 
of the calculation region from x -- 1 to x = 2 (outside this region the gas is at atmosphere conditions). When 
t > 0, shock waves propagate to the right and to the left of the increased pressure region. If there is a drop 
screen along the path of the SW, then it should decay. This is evident from Fig. 8 which presents the pressure 
curves at a point ahead of an obstacle behind the screen as functions of time t. Dashed and dot-and-dash 
lines correspond to screens of porosity K = 0.83 and 0.72, respectively (in all cases the screen consists of four 
water drop layers); the solid line is the dependence of pressure in the absence of a screen. It is seen from the 
data presented above that in the presence of the screen the maximum (peak) pressures decrease substantially; 
moreover, the current values of pressure in front of an obstacle decrease in the case of a screen of relatively 
small porosity. However, for-a screen of porosity K -- 0.72 the pressure in front of an obstacle exceeds the 
pressure level without the screen (since t = 80 #sec), which is accounted for by the "piston" effect. 

In conclusion, the author is grateful to Prof. V. M. Fomin and Prof. B. V. Litvinov for formulation of 
the problems and useful discussion of the results. 
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